
Encapsulation, Interfaces,
Subtyping & Subclassing:

A Brief Glimpse

Nathaniel Osgood

MIT 15.879

May 9, 2012

Recall: A Key Motivator for Abstraction:
Risk of Change

• Abstraction by specification helps lessen the work
required when we need to modify the model

• By choosing our abstractions carefully, we can
gracefully handle anticipated changes

– e.g. Choose abstracts that will hide the details of things
that we anticipate changing frequently

– When the changes occur, we only need to modify the
implementations of those abstractions

Recall: Types of Abstraction in Java

• Functional abstraction: Action performed on data
– We use functions (in OO, methods) to provide some

functionality while hiding the implementation details

– We previously talked about this

• Interface/Class-based abstraction: State & behaviour
– We create “interfaces”/“classes” to capture behavioural

similarity between sets of objects (e.g. agents)

– The class provides a contract regarding
• Nouns & adjectives: The characteristics (properties) of the

objects, including state that changes over time

• Verbs: How the objects do things (methods) or have things
done to them

Recall: What is a Class?
• A class is like a mould in which we can cast particular

objects
– From a single mould, we can create many “objects”
– These objects may have some variation, but all share certain

characteristics – such as their behaviour
• This is similar to how objects cast by a mold can differ in many

regards, but share the shape imposed by the mould

• In object oriented programming, we define a class at
“development time”, and then often create multiple
objects from it at “runtime”
– These objects will differ in lots of (parameterized) details, but

will share their fundamental behaviors
– Only the class exists at development time

• Classes define an interface, but also provide an
implementation of that interface (code and data fields
that allow them to realized the required behaviour)

Familiar Classes in AnyLogic

• Main class

• Person class

• Simulation class

Work Frequently Done with Objects

• Reading “fields” (variables within the object)

• Setting fields

• Calling methods

– To compute something (a “query”)

– To perform some task (a “command”)

• Creating the objects

Encapsulation: Key to Abstraction by
Specification

• Separation of contract (“interface”,
standards,terms) from implementation (allowing
multiple implementations to satisfy the interface)
facilitates modularity

• Specifications indicate expected behavior of
anything providing the interface (what is required,
what is promised)

• This distinction between interface &
implementation forms a key role in many areas of
practical human activity

Encapsulation: Benefits

• Locality: Separation of implementation: Ability to build
one piece without worrying about or modifying
another
– See earlier examples

• Modifiability: Ability to change one piece of project
without breaking other code
– Client code should only be counting on what is promised in

contract – not all of the implementation details

• Substitutability: Can replace one implementation by
another

• Reuse: Can abstract over implementations that differ
only in their details to only use one mechanism: e.g.
Shared code using interface based polymorphism

Practical Examples of Separation of
Interface from Implementation

• Dealing with taxi (via meter, credit card support)
– Doesn’t depend on which particular taxi you have!

• MBTA/MTA/BART/other metro train tickets (tickets bought
anywhere work with any train station)

• Franchises:
– Delivery companies (FedEx, Purulator, etc.)

• Rules of delivery

• Pricing

– Car rental (certain insurance guaranteed, etc.)

• US Post Office (stamp requirements, pricing, ZipCodes &c)

• Computer-related examples
– Protocols (e.g. WiFi, DHCP, TCP/IP)

• If adhere to protocols, can deal with any router

– Android Applications (app can work w/any android phone)

– “PC”: Windows/Linux Hardware Specifications

Recall: Defining the “Interface”

• We are seeking a form of contract

• We achieve this contact through the use of
specifications

Two Common Mechanisms for
Defining Interfaces

• Interface alone: Explicit java “interface”
constructs

– Interface defines specification of contract

– Interface provides no implementation

• Interface & implementation: Classes (using java
“class” construct)

– A class packages together data & functionality

– Superclasses provide interface & implementations

– Abstract classes as mechanism to specify contract &
define some implementation, but leave much of the
implementation unspecified

Linking Interface & Implementation

• In Java, if class C implements an interface, we
use the keyword implements

• Implementing an interface allows one to deal
with that class through that interface

– At a technical level, the type of class C is a
“subtype” of the type associated with the
interface

Example of Implementing an Interface

interface Presentable { void draw(); void disappear(); }

interface SerialNumbered { int Id(); }

class X implements Presentable, SerialNumbered

 {

 void draw() { … }

 void disappear() { … }

 int Id() { …. }

 }

Example of Implementing Interfaces
• Set interface could be implemented by many

particular classes

– Each provides an implementation of the set operations

– Some might be
optimized for
small sets, others
for large sets

Subtyping Relationship (Informal)

• We say that type A is a subtype of type B if we
can safely substitute an A where a B was
expected (e.g. substitute in a Person argument
where an Agent was expected by the parameter)

• A subtype must be in some sense “compatible”
with its supertype
– This compatibility is not merely a matter of

signatures, but also involves behaviour

– It is not possible for a compiler to verify the
behavioural compatibility of a subtype &supertype

• If we are expecting a B, we should not be
“surprised” by the behaviour of an A

Subtype Hierarchies

• Below, we concentrated on subtyping
between an interface and its implementation

– This allowed the implementation to be used
wherever the interface was required

• We can, in fact, construct extensive
hierarchies via subtyping

Commonality Among Groups
• Frequently one set of objects (C) is just a special type of

another (D)
– All of the C’s share the general properties of the D’s, and can

be treated as such – but C’s have other, more specialized
characteristics as well

• For example,
– Radiologists & Orthopedic surgeons are both types of

doctors

– Licensed Practical Nurses and Registered Nurses are types of
nurses

– Physiotherapists, Doctors, Nurses and Chiropractors are
types of health professionals

– All health professionals and patients are types of people, and
share the characteristics of people (e.g. susceptibility to
aging, illness and death)

Domain-Specific Subtyping
• Frequently we will have a taxonomy of types of

objects (classes) that we wish to model

– People

– Chiropractors

– Physiotherapists

– Licensed Practical Nurses

– Registered Nurses

– Patients

– Orthopedic surgeons

– Radiologists

 We may group objects into classes, but there are commonalities among the classes as well!

Example

• “Person” interface might provide methods including
(but not limited to)
– IsInfected

– Infect

– Age

– Sex

• In addition to the above, a “HealthProfessional”
interface might provide a method “RecentPatients”
yielding patients seen by the professional over some
specified period of time (e.g. the most recent year)

• The “Doctor” interface might further provide a method
ResidencyInsitution()

Health Professional Hierarchy

Person

Patient Health Professional

Doctor Nurse Chiropractor Physiotherapist

Radiologist Orthopedic Surgeon

Some Benefits of Type Hierarchies

• Polymorphism – we can pass around an object that
provides the subtype as an object that provides the
supertype. (e.g. any method expecting a person
argument can take a Doctor radiologist)

• Understanding
– Capturing specialization hierarchies

• Reuse
– Code can be written for supertypes, but reused for subtypes

• Extensibility
– Open/closed principle (ideally no need to modify code of

superclass when add a subtype)

Polymorphism

• We can pass around an object that provides the
subtype as an object that provides the supertype.

• Polymorphism enables decoupling of
– Apparent type
– Actual type

• Programming against apparent type interface
• Dispatching is against actual type

• E.g. Reference to Dictionary, but actual object is a

hash table

AnyLogic Subtyping Relationships

• AnyLogic models are built around a set of classes
with subtype relationships to each other

• The presence of these subtype relationships allows
us to pass instances (objects) of a subtype around
as if it’s an instance of the supertype

One AnyLogic Hierarchy

ActiveObject

Main Agent

Person Bird Deer

Woman Man Doe Buck

Nodes colored in blue are built in to AnyLogic. The other nodes could be generated
automatically (e.g. “Person”, “Bird”, “Deer”) or built (“Man”/”Woman”, “Buck”/”Doe”)
as part of a model

Transitions in Statecharts

Transition

TransitionRate TransitionCondition TransitionTimeout TransitionMessage

Experiment<MainClass>

ExperimentOptimization ExperimentSimulation

ExperimentParameterVariation
ExperimentCompareRuns

Other AnyLogic Hierarchies

Model Experiments

Java.util Type Hierarchies

Java.io Type Hierarchies

Subtyping AnyLogic Objects

• One of the most powerful ways of customizing
AnyLogic’s behavior is by subtyping classes in
AnyLogic that are either built-in or auto-generated

• Examples

– ResourceUnit

– Entity

• Here, instances of your class can circulate as if it’s
an instance of the original class

Capturing Hierarchies via Subtyping

• We can capture a hierarchy such as that in the
previous slides by

– Defining interfaces

• Each interface would specify the methods that are to
be supported by any object that provides (supports)
that interface

– Setting up “subclass” relationships of these
interfaces through the use of the “extends”
keyword

Subclassing
• “Subclassing” is a special type of subtyping that also

allows the subtype to reuse (“inherit”) the
implementation of the supertype

• This means that, to achieve a small modification for
the supertype behavior, the subtype doesn’t have
to go through and re-implement everything that is
supported by the supertype

• Subclassing brings two things
– Subtyping

• Provides e.g. polymorphism

– Code reuse
• via inheritance of methods, fields

Contrasting Tradeoffs
Interfaces

• Advantages
– More flexible

• Capture non-hierarchical
relationships

• Easily added to definition of an
existing class

• Enables “mixin” like style

– Cleaner type & inheritance
hierarchy

• Disadvantages
– Cannot easily extend existing

interfaces

– No default implementations can
be provided

Class-Based Inheritance
• Advantages

– Easier extension with new
functionality

– Permits implementation reuse

• Disadvantages
– Subtype constraint (LSP) violation

• Desire to reuse code can lead to
deliberate ignoring

• Inheritance can lead to accidental
violation & violation of open-closed
principal

– Distort inheritance hierarchy
• Abstract classes pushed up
• Combinatorial explosion for dual

interfaces

– Single inheritance limits to tree
– Multiple inheritance is dangerous

• Semantically tricky
• Confusing

 (Some Items Adapted from Bloch, Effective Java, 2001, Pearson Education)

Network with Multiple Agent Classes

Realizing Multiple Agent Classes
Sharing Same Network

• Create an agent superclass

• Create multiple subclasses of that superclass

– In “Properties”

• indicate that “Extends” superclass

• Provide constructor to associate with agent population & Main
class

• For the Agent population, use a replication of 0

• Create Startup code for “Main” that adds the
various types of agents to the model

– This uses code adopted from Java code output by build

Hands on Model Use Ahead

Load Sample Model:
SIR Agent Based

(Via “Sample Models” under “Help” Menu)

Male Agents

Male is a subclass of Person

Female Agents

Male is (also) a subclass of Person

Example Subtypes (HPV Model)

Common Problems
• References to concrete classes leads to multiple

changes for a simple conceptual change

– Can be fixed by consistent programming against
interfaces

• Claimed subtypes are not behavioural subtypes of
supertypes

– Subclassing for code reuse or mistaken notion of
specialization(“is-a”) causes flawed design, defects

We’ll comment on these

“Fraudulent Subtypes”
• When building a subtype/class hierarchy, we specify

(“tell the compiler”) which units are subtypes of
which

– In Java, this is specified using “implements”&“extends”

• The compiler generally accepts user information on
type structure at face value

– Full checking is not possible

– Limited checking (e.g. on signatures) errs on the side of
being conservative (may report error even in cases
where legitimate) (e.g. incompatible signatures)

• It is very easy to create a subtype that is not a safe
behavioural subtype of its alleged supertype

Subclasses: A Particularly Common
Type of Fraudulent Subtype

• Misplaced use of subclassing can very easily
create classes that are not subtypes

• When such “fraudulent subclasses” are used
with polymorphism, the code can break easily

• Two prime ways in which code can break

– Implementers deliberately chooses subtype
behaviour that makes it behaviorally incompetible
with the superclass type (supertype)

– Implementers try to make this a behavioral
subtype, but don’t have the necessary guarantees
on superclass implementation(later)

Why Are Fraudulent Subclasses
So Common?

• Subclassing is abused as way to reuse code via
inheritance

– This is a matter of convenience

– Want to avoid redefining a broad set of methods
just to override a few

• Classes are used to group a set of objects where
an “is-a” relationship applies but which are not
behavioural subtypes

– E.g. Square “is a” type of rectangle

Liskov Substitution Principle

• Principle is key to recognizing a legitimate
subtype relationship

• The principle reflects the need to reason safely
about types in the presence of polymorphism

• Statement of Principle (Liskov& Wing)

“Let q(x) be a property provable about objects x of
type T. Then q(y) should be true for objects y of type
S where S is a subtype of T.”

Persistent Metaphor: Service Contracts
• Desire for encapsulation Clear understanding of

what is guaranteed

• Example: Franchise of Delivery service
– Question: Given parent company guarantees, what

must a franchise offer to be legitimate?

– Precondition: Condition for guarantee to hold
• Parent company: Customer must drop off package by noon

• Ok Franchise: Customer can drop off up to 3pm

• Illegal Franchise: Customer must drop off package by 9am

– Postcondition: Service guarantee if precondition met
• Parent company: Delivery is by 5pm the next day

• Ok Franchise: Delivery is by noon the next day

• Illegal Franchise: Delivery is by next year

Contract Hierarchy

Fedex

Deliver()
 // Precondition: Package available by 12 noon
 // Postcondition: Package delivered by 5pm next day

Fedex Franchise 1

Deliver()
 // Precondition: Package available by 3pm
 // Postcondition: Package delivered
 by noon next day

Fedex Franchise 1

Deliver()
 // Precondition: Package available by 3pm
 // Postcondition: Package delivered
 by noon next day

Liskov Substitution Principle: Intuition

• Consider a situation in which a programmer is creating
code with a variable v whose
– Apparent type is T1

– Actual type is a subtype T2 of T1 (due to polymorphism)

• To avoid risk this code will have to be changed with
every new subtype of T1, it is critical that anything the
programmer can rely upon for a variable of type T1 is
also true for v (despite being of type T2)
– Any type T2 that which departs from the contract of T1 can

break this code

– Bear in mind that other code may treat v as a T2

Distinction between Class and Object

• Sometimes we want information or actions that
only relates to the class, rather than to the
objects in the class

– Conceptually, these things relate to the mould,
rather than to the objects produced by the mould

– For example, this information may specify general
information that is true regardless of the state of an
individual object (e.g. agent)

– We will generally declare such information or
actions to be “static”

Example “Static” (Non-Object-Specific) Method

